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I. Introduction 
A ~iiajor problem for robots during autonomous 

cross-country navigation is the discrimination between 
drivable ;tnd non-drivable objects in the path. Until a 
few years ago, outdoor robotics was mostly avoided, 
in part, 1)ecaiise many core research problems (e.g., 
pa,t,li plarining, rriapping, etc.) could be studied in- 
doors > (lwwiipliiig them from the uncertainty a8ssoci- 
a . t d  with iiristlriic:t,ured environments. The rna,iri ex- 
cqtiori  w a s  oiit,(loor navigation of man-made roads, as 
iii the  case of the Navlab vehicle arid its successor's [I]. 
-4s the  s t h t  e of d l -  t,erra.in sensors improves, t)he de- 

( :o 11 nt r y r i  av i g a t  io n 11 1 at, fo  r in s , 1 ilw 
robots arid searc:li arid rescue ve- 

hicles, is liecwrriirig cost-effective. 
The 1;iser rada,r (ladar) is one of tlie sensors that! 

is 1) (+con i i I ig c: os t - e ff e c t, i ve in cross- country navigation . 
The la,tla.r is itri  active sensor that fires a laser lieam 
m ( l  tlieri senses its refl ion, or return, from tlie 
S C P I ~ P .  From t,liis return, the sensor estimates the clis- 
tim(,e, or r'nrige, tn the otlject in t>lie scene hit by the 
hemri. Thcl iw of a rot,atirig mirror allows the sen- 
sor' t,o s ~ 7 e e ~ )  the  scene ahout an axis, obt,airiirig a 1-D 
raiige signal ( ~ . g . ,  [2]); placing a 1-D laser on a tilt unit 
allows the seiisor t o  sweep an area of' the scene, pro- 
ducing a range image (e.g., [3], [4])). Ladars are useful 
t)ec.ause they pxovide a range estimate in rriariy situa- 
tioris where itj cannot) be estimated with a stereo pair 

Fig. 1. Robot using it ladar t o  s ( : m  a sceiie 

or by other means, c g .  , night) operation, low-frequency 
high-contrast scenes with shadows, et c. 

In t,his paper we describe a real time algorithm that, 
uses the range estimates of a rotating ladar to detect 
foliage in an outdoors scenario. This classification al- 
lows the inclusion of tall grass to any free pat,h tha.t 
the robot may select, while still a,llowirig it to avoid 
partially hidden obstacles. Recent approaches to us- 
ing a ladar to find obstacles partially hidden by grass 
rely on the statistics of the signal (e.g., [5], [GI) .  In 
contrast t)o these approaches, we exploit tjlie spatial 
and temporal localities of the objects in tlie scene t,o 
classify tlie returns. The result is a robust algorithm 
with a low false alarni rate. 

This paper is organized as follows. In Secs. I1 arid 
I11 we describe the ladar and provide an overview of 
the algorithm. In Secs. IV and V we show how to 
select, non-foliage returns arid how to prune them, re- 
spectively. In Sec. VI we describe how we keep track of 
the s t a k  of the scene. In Sec:. VI1 we describe experi- 
rnerit)al results using Urbie, ari all-terra,in autjoIiomoiis 
robot,. Firially, in Sec:. VI11 we presentl our toric-lu- 
sioiis. 

11. The Ladar System 
Consider a. mobile robot] moving in a field of grass, 

as shown in Fig. 1. This figure shows a top view of 
a cross-section of the scene, where blades of grass arid 
tree trunks are represented by small and large white 
circles, respectively. Tree trunks ,4 and B represent the 
cases where an obstacle is partially hidden by grass 
and in the clear, respectively. The robot scaris the 
scene parallel to tlie ground, once every r seconds. 
Each scan spans an angle of 0 radians and provides 
range estimates t,o objects located farther than d l l I , i , ,  

asid closer than dllLcl,:c. Thus, a sa,mpling interval (i.e., 
the angle between successive fires of the laser) of H 
radians yields at, most 
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I ;mge estiiriates p e ~  scan. Some estimates rriiglit be 
missing. e.g., tbeIe might not be an object in the path 

I within the valid distnnces or the target 
rniglit ;tlisor t) the light a t  the wdvelengtli of the laser. 

1. tho 1oc.atioris of tlie s( ene hit by a hemi  of 
11 <lie rriciilted with a bldc 1; circle. 
<i( ( ’ i i irf(  17 of e,-lcli range estimatp is dfectecl b y  

p a ~ ~ t i i i e t ~ r s  [is vctriecl <is clistantci, ~Iiviroiirrientd tern- 
p c ’ r n t l l r c ~  t l II (1  color h1ltl pose of t1ic-l target [2]. In prdc- 
tl( ( J ?  wltlllrl d 11a110w 1dIlge iIltclIVd1, the e1101 &,‘ of 

inidto (h i i  1)e (orisideretl to vary linearly with 
the (listriIi( (1  (1,. Thus. the imgt .  estiriidte of dn obi 
loc-,itml ,it <i ( l i s t a t  e d ,  is 

I’, = d,  f ( a  d ,  + b)  

with 

for ( L / L  I, 4 L ~~7?,,(,,:/; ’ 

Firiall,y, we consider negligible the laser divergence 
wit,liiii tjhe valid range. Thus, t,he beam is so nar- 
row that it c;;trinotj liit two different] objects located at] 

which creates erroneous range esti- 
cornbiiiatliori of both distances. 

111. Algorithm Overview 

fro111 Otll(-31. ele 
retllrll of ead1 

The goal of the algorithm is to  discriminate foliage 
)f the scene by classifying every 
FOLIAGE or NOTFOLIAGE. -4fter 
1, the a.lgori tlhm produc:es t h e e  
the results at different) levels of 
iled out)put, is the array of fiml 

range est,ima.t,es, Rf , which cont,airis N,. elements, each 
o i i ~  c.orrcispontliiIg t,o one retmri of the scan, its shown 
in Fig. 1. If we are not, interested in the classifica- 
t,ioii of each ret,urn t,lien tlie array R, suiiimarizes t;he 
resiilts that span a given angle (2. Herice, R, has N ,  
e 1 e r ii en t, s w h er e 

iv, = O / N .  

Firially, the most general output is the flag ularm 
icli is set) t)o iIi(1icate t,liat> there is an object in the 
ne t h t ,  is not, foliage. 

The pseutlo-c:ode of the algorithm is: 

A N  AI,Y %F,-LA D A R -  S( ’ANS () 
1 
2 
3 forever 

R , ( 1  : N e )  t 0 
R,(1 : iV,) t 0 

-4, n] +GET-SCAN-DATA () 
( i l o r / r / ,  R,, R t ]  +-CLASSIFY (A, R) 

AfteI iriitihlizing the arrays Rt and R, we p~oceetl 
ris. Line 4 rclatls the scan into two 

r i ~ l r i ~ s  of A7, eIoiIieIits, A dlritl R. The element -4(/)  
is the diigl(1 (it whit h the I-tli hemi  w a ~ ,  fiiretl while 
R ( I )  is tliv I<IW ~ m g o  c3stimate of the object liit hy the 
h < i i n .  Iii thc’ i w t  of this pqwi we assume that we 
have <M ( C’SS t o  hi, , N , ,  d,,, ,,) aritl (I,,,,, . 

In the routine CLAS,SIFY() ,  we exploit three locality 
priiiciples to  firi t1 NOTFOLIAGE returns. To illustrate 

these principles we assume that, at time 2; we found iiii 
obstacle at angle ,8, e.g., the tree trunk A in Fig. 1. 
First), the localit,y in time of t]lie obst,acle indicates that, 
it, will tie located a,roiind /? at time t+r. Second, we i i s ~  
the locality in space of the obst)ac:le, i.e., asi obstac:l(: 
must, ha.ve a large size, spariirig over a, large angle y‘~. 
Thus, if a beam hits the ol~stacle at, angle p then all 
beanis t2ia.t might liit the obstac:le must lie within /j f 
$. Finally, we use the locality in space of the clear in 
tjhe folia,ge that] allowed the laser to liit the partially 
hidden o\jst,a.cle, i.e., if a beam a.t, angle [j penetnt,es 
t)he folia,ge, t)lieri all its inniediate neighbors fired at 
[j f A, for A << (I,!), itre liltely to perietra.t,e t,he foliibgci 
t]hrough this same clear too. These localit]y principles 
hold for any combination of motions of tlhe robot) a,nd 
the obstacles, as long as the sampling interval, 0, and 
the time between comecutjive scans, T ,  are suf€icieritlly 
srriall. 

The pseudo-cock of the CLASSIFY routine is 

CLASSIFY (24, R)  
1 
2 
3 R, +-RELAX-OBST(A, R,  R,) 
4 Rj +REMOVE-NEW-OBST (A ,  R,) 
5 

[?I, / /ad2u]  +FIND-LOW-FREQ (A ,  R) 
R, +GET-OBST-CANDIDATES (‘4, R, u ,  ~ I U I ~ ~ U )  

Rt +REMOVE-THIN-OBST ( R f  , w, , 0,) 
[ ( d U r U i ,  R,] +UPDATE-AND-ARCHIVE ( 4 ,  R,) 

6 

8 

R f  +CROP-RANGE (Rf , &m,, dr,L(LL) 

7 
return (nlnrrn, R, , Rf ) 

The first) three routines determine an arra,y of re- 
turns liltely t)o have hit, obstacles. The second tlirw 
routines determine R f ,  that, classifies each return of 
the scan. Finally, the routine IJPDATE-AND- AR,CHIVE 
saves the results for e v a l h o n  of future scans. We now 
discuss these routines. 

IV. Candidate Selection 

that  are liltely to belong to  obstacles. 
A. Finding low-frequency scan regions 

The routine FIND-LOW-FREQ uses the estimates R 
to  find an array R, wliere it) is easy t!o identify r e t u n s  
that h l o n g  to obstacles. Consider tlie returns in Fig. 
1. If we plot, R, its shown in Fig. 2 . 4  we notice that, 
t)he problem of locat,ing t,he obst,;tc:les miid tlie foliage 
is similar t)o tlliat of recovering a signal buried in noise. 
Tliiis, t;he obst#a,cles can be recovered bett)er if we filt,er 
out scmie of the foliage returns, increasing the signal- 
t]o-noise ratio of the scan. 

To select] a filter t,hat) removes rnostJy foliage ret,urns, 
consider all the possible returns wit8hin an angle (1 (i.e., 
the size of our filt,er) that, are cenkred a.rounc1 an a,rigle 
,!j, as shown in Fig. 1. If the obstacle spans an angle 
larger t)liari a ,  any beam fired at] /j * t u / 2  can travel, at, 
mostJ, as fa,r as the obst,a,cle. Thus, the largest ret,iirri 
o f  the set, is likely t,o ljeloiig t o  the ol)st,a.c:le if’ any  of  t h e  
l)e.;inis hit, the obstacle. Herice, in our case, we ca.11 use 
21, I r i ~ , ~ i I ~ i i i ~ i i - v ~ ~ , l i l e  filter that  will Ie~~iove  rria.inly foliage 
ret,iirns. The size of tllie filter, C Y ,  iriiist lie larger t1ia.n 
the sarriplirig irit,erval 6’ ant1 srriadler th:iri the angle 
spanned by the srnallest, object, that, we warit! t,o detects 
when locat,ed a t  a distaice CL,,,,~~,, from the sensor. The 

The first t h e e  routines of CLASSIFY select) retur~is 
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Fig. 2.  ;t) The  e~ t~ i rna te s  of  the  example shown in Fig. 1, b) 
[,lie x r a y  'o o f  rriaxiriiiirrl range values, c) its deriv;tt,ive, (1) 
seicoritl tlerivat,ive arid e )  the ;tbsolut,e value of its second 
tleriv;tt.ive divided by 71 

result of applying such filter to norloverlapping win- 
dows of R is shown in Fig. 2.b. Within each window, 
a 11lack dot indicates the iriaxirnuni return selected by 
the filter, a white dot indicates a, return filtered out, 
and a, solid line indicates the value of the resulting fil- 
tered scan w .  Since, in this example, (x z 2 8 then I I  

has N,  z N e / 2  elements. 
The next step is to identify low frequency regions of 

the array w t,hat rriiglit~ indicate the presence of an ob- 
stacle using the magnitude of its first or second cleriva- 
tlives. In Figs. 2.c-d we show approximations of t,l 
deriva.tives for the example, fount1 using forward 
ferences. If the face of the olxtzde,  as rnapped on the 
array t i ,  is either. constjalntj or follows a, raanp fimct1ion, 
then the rria,gnitucle of the second tleriva,tive: is small. 
Thus, we are able to ideIitJify objects of any sha,pe m(1 
in any  pose with respectj to the sensor, as long as their 
surfaces are loca,lly flat,, hy searclring for areas of s r r ~ l l  
r n  a,gr ii t, 11 de in tj 11 e s ecori tl ( le r iva, t, i vc . 

The last step of this routiie is to genera.te tlhe a1ra.y 
nad21) which stands for norrnalized absolute value of 
the second derivative of w .  The at)solut!e value is met1 
to allow a, magnitude-based thesholding of the sec- 
ond tleriva,t,ive of u. Furthermore, ii norrnalization of 
7md2u by the distance to the object, removes the hias 
introduced by the fact that  ohjects located at, different, 
distances have a different associated noise that, affects 
t)he measure of their frequency. 

The pseudo-code of the FIND-LOW-FR.EQ routine is 

FIND-LOW-FR.EQ ( A ,  R )  
1 v ( l  : N,) t O  
2 
3 

for 7. t 1 to Ne 

5 u ( i )  t R ( r )  
6 
7 
8 
9 if ~ ( i )  = O 
10 77,nd2w t 0 
11 else 
1 2  
13 return (v, 7cud2v) 

for i t 1 to N ,  - 1 

for i t 1 to N ,  - 2 
dv t v( i  + 1) - ? I ( i )  

7l,ad2,u 4- Id.u(i + 1) - do(i)1 / ' U ( i )  

Lines 1-5 filter R arid generate ( 1 .  Lines 6-7 approxi- 
mate the derivative of u using forward differences and, 
finally, lines 8-12 generate the absolute valiie of the 
second c1erivat)ive of u normalized by ( I .  

B. Selecting candidates 
The GET-OBST-CANDIDATES routine selects from R 

those returns that, are most likely to  be obst?acles re- 
turns. The pseudo-code of this routine is 

GET-OBST-CANDIDATES (A ,  R, w ,  70nd2?1) 
1 
2 

4 (%uric t 0 
5 while clone = 0 
6 tlorie t 1 
7 
8 

R,(l : N e )  t 0 
for i  t 1 to N ,  

3 T k ( . / : )  t 4- MAX (T/ , - l (%),  T ~ - 2 ( i ) ) / 2  

for 7' t 3 to  Ne - 2 
i t [ A ( r ) / a ]  + 1 



9 
10 continue 
11 

if u ( / )  = 0 or R(r)  = Rr(r*) or R(r)  = 0 

if ( X ( r )  = o ( / )  arid 
/ / ( / { U o ( / )  = M I I N (  / / ( / ( / 20 ( / ) .  Tk 

1 2  R, (1.) t R(1j 
13 
14 
15 
16 d o / / r  t 0 
17 Tk-2 t Tk-1 
18 Tk-1 t Tk 

TA ( I )  = TA ( I )  + h 
TA ( I  f 1) = Tk ( i  f 1) + h / 2  
TA ( I  f 2) = T), ( I  k 2) + S / 3  

19 return (R, ) 

It, retliirris i~ i i  a,rray of cariditlates R, which is zero ex- 
cept at, the loc:a.t,ioris of ret,urris for which there is am 
s trorig evideri(:e that tielorig tlo obstacles. 

=2 small rriagriitliide of 7 1 ~ ~ d 2 u  (%) indicates a signal 
with low frequency component,s which might indicate 
the presence of obstacles. For example, in the plot of 
7cad2.u shown in Fig. 2.e, of the five locations with a 
srnall rnagiiitiide, the locations 1 and 10 correspond to 
obstacles while 4 arid 5 correspond to low frequency 
;irea,s c~iisetl by a la,ck of signal. Thus, an obstacle in 
a i  a.re?a i (mi I-)o observed if the value of 71,nd2u(i) is 
s ~ i ~ l l e r  t h r i  ;i thesholtl T k  ( i ) .  Iri lines 2-3 we set this 
tj1iresholtl t,o t81ie s l i m  of  a coIist,ant, Kl and a function 
of t,he t,liresholtls foiin(1 for this location in the two 
I)revioiis scaris. W e  c1esc:ril)e tJic func:t,iori that, we iisetl 
in Lint) 3 ;  ot,lit-:r functions tJliatj raJse the tlireshold at, 

oils where theslioltls were large in previous sca,ris 
also be siiit,n,hle. 

The rria.iri part) of the routine updates tlie arrays 
of c;tridicla,tc-!s R(. and tJiresholtls Tx: . A fast-rejection 
c:oritlit,ion, iri line 9, re.jec:ts those areas of the scan with 
no ret,iirns (i.e., TI(%) = 0) , individual locations with 
no ret,iirii (i.e., R(Y)  = 0) arid locat,ions that already 
c:oiit,;i,in H cariditlate (i.e., R(Y)  = Rc(7.)). The update 
coriditlioii, in lint. 11, sta.tes that> a return is likely to be 

by the niaxirriuni- 
if together with its 

s a low freqiiency region 
(i.e., 71(i,d2u is smaller than all tlhe thresholds within 
a, vcicinity of 2) .  If' the update condition is verified, 
tlie array of caritlidates is updated with the value of 
the est,imatIe (i.e., R,(r)  = R(7')) and, having detected 
this positlion as an obstacle, all the thresholds of the 
neiglib or lio o d are raised fraction of a value 6. 

In ore t lie t kl r es 1lOl ds 
of 1oc:ations close tjo t,he i 1 obstjaclcl than those 
aw;~y f r o ~ ~ i  it.  

C. Reevaluating returns near to candi- 

Tlie nori-zero locations of R, a.re very likely to 
01)s t,ac:les hilt, to achieve t>liis confidence we sacrifit 
resolutiori t,lia,t we now rriiist, recover. At] this point,, 
;1. v;ilufr o f  R,. (:m only he a cariditlate if it, has tlie 
valiie st?lec:tJced tjy the rnaxirnurn-value filter. Tlie goal 
of r j  ELAS-OBST is to use the location of e;ic:li obstacle 
in X,. to reevaliia t,e t8he ret,urns inniecleately a.cljac:ent, 
t,o it,. The ~)sei'i(lo-c:otlci of this routine is 

-4s shown in lines 13-15, 

dates 

REI ,AX-OHST (A, R. I&.) 

1 d 0 7 I f '  t 0 
2 while tlonf- = 0 
3 tlollr t 1 
4 

6 
7 
8 

for I' t 3 to N ,  - 2 
5 I t p!L(r)/trJ 

C +- 1 + A-2 (GA-l(L) + C A L L ( ? ) )  

T t C (0 R(r)  + b)  
if R, (1') = 0 and 

u;=-2 ( (R (1' + . I )  > 0 and 
IR(1.) - R(r + ) ) I  < T) 

9 R,(r)  t R ( r )  
10 donp t 0 
11 return (R,) 

The rriain loop upt1at)es the array of c:andidat,es R, 1111- 
t>il there is a reevalut,ation of t,he returns of R that$ d o ~ s  
not lead to an update of Rc. As iritlicatxxl in lines 8-9, 
a return becomes a candidate if it, was not previously 
a carididate and if any of its adjacent returns is both 
already a carididate arid is such t,hat the difference be- 
tween the two returns is smaller than a threshold T .  
Hence, we use the locality in space of the obstacles to 
reevaluate a return adjacent to  a return that is known 
t,o belong t,o an obstacle; if two adjacent beam hit ta.r- 
gets 1oc:at)etl at, about, tlie same distmice and if we Itnow 
t h t )  one of the beams hit] an obstacle then it is very 
likely that tlie ot,lier beam hit, t)he obstjx1e t,oo. 

The key for siic:c:esfiil iiptlatirig is the t,hresliold T 
which is coIriposetl of two elenieiit,s, i ts  clescritiecl iii 
lines 6-7. The first) element is the scalaa. G ,  larger 
than unity, which is some function of tlie arrays CA.- 1 
and C k - 2  that, contain iriforniatiori about, the location 
of obst)acles in the previous two scans, i.e., these ar- 
rays lteep track of obstacle liltelihood over t i n e  in t>he 
same way that the aa.rays Tk-1 arid T k - 2  kept tmck of 

routine. We will describe t,hese a,rrays la.ter, when we 
discuss the routine where they are updated. The sec- 
ond element of T is our approximation tlo the error of 
the estimate, Le., a linear function tlmt increases with 
range with pararrieters given by Ecy. 1. Th i s ,  a re- 
turn adjacent to a candidat)e return is upda,ted to be 
a candidate if the difference between their ranges lies 
within the expected error for that, distance; if we have 
evidence that an obstacle has been sighted before at, 
this loca,t,ion, then C > 1 relaxing the expected error. 

previous tlir'ttShokhgS in the GET-OBST-CANDIDATES 

V. Candidate prunning 
The second three routines of CLASSIFY return a find 

v1assific.a t ion Rf  of each r et,iirn hasetl on pruiining tlicl 
array of raridiatJes R, . The objclctivcl of this prunning 
is to keep ii low false alarm late. 

Tlie first prunning exploit,s the time and space lo- 
calit,y of the obstacles. The code of this routine is 



7 return(Rf) 

Liries 3-7 5tate that a c.anclidate in R,(Y) is a firial ob- 
stacle in I?, ( I . )  only if an obstacle was located in the 
Iieightljorhoocl in eitlior of the previous two scans. An 

acle at, a given location will be identified as it pre- 
sly seen obst acle regardless of whether it ~ r i o v ~ s  

slightly o r  is terripor arily occluded. However, a pre- 
viosly sw11 obstacle will be ident]ified as a new obsta- 
cle (aricl not ,~cldt.d to  I ? + )  if its position with respect 
to the Li(1ai c.lianges so fast tlliilt its new location is 
out side its pr wious neight ljorhood or if the occlusion 
lilsts so long t hat tlie evit1enc.e of having seen it before 
h a s  c3xl)ir o t l .  

Tlio sclc~ritl l ) r  iiririiiig I outirio. H E.IZ~IOVE-TIIIN-0US:'I'. 
i(>moi-os f r o i r i  the list of find ol .le3 xi thoso le- 
t i i r  11s t h t  c.orrc~sponcl to isolnt its, i.0. it lweps 

witliiii ci siirroimling wiritlow of dzW5/2 returns, wlie1cl 
PLT3 << Ai, . The cocle of the routine is 

i111 o ~ ) s ~ ~ I ( ' ~ o  011l\~ if tlieI(b illc' :it 0, ol,stac.lc> hits 

REMOVE-THIN-OBST ( I? t  , w,, 0,) 
1 t l =  [T/r7,/2j 
2 
3 
4 if T[r]  > 0 
3 co/If t 0 
G 
7 

9 if m r i t  < 0, 

11 return (I?,) 

T[1 : N , ]  t R f [ I  : Ne] 
for I' t t l f  1 to  N ,  - d 

for A. t -d to  d 
if T[r  + k ]  > 0 

8 t 'OlIf  t C W J t  -k 1 

10 R+[r.] 4- 0 

The last priining routine, ( 'HOP-RANGE, rerrioves 
f r o m  R+ tho leturns that lie outside the range for 
m-1iic.h oiir lineitr approxirnation of the expected er - 
101 lioltls, i.e.. it z ~ - ' L ~ s  the. vitllleh of Rt (1') such that 
f l j  ( 1 . )  < (A,/ , , L  01 q ( I . )  > (L,/ / ' 

11 CX-2 t CA-1 
12 for Z t 1 to  N ,  
13 if C,(i) > C ~ - l ( i )  
14 
15 else 

C,- l ( i )  t C,(i) + C,-,(i) 

16 
17 

18 t 0 
19 return ( u l a ~ ~ r i ~ ,  R,) 

The first, loop of tlie routine, in lines 4-10, a,ccoiii- 
plishes three things. First, it initializes the array C k  

with a value K:3 in all the locations where a canclida,te 
was found. Second, in lines 8-9, it sets the sunirriary 
array R, to t!he srriallest, non-zero return, i.e., if there 
is an obstacle in the direction i ,  then R,(i) will con- 
tain the rriiriirriuni distance bet1ween the robot ant1 the 
obstacle. This value can lie iised to modify a robot tra- 
jectjory wit)liout, having t)o analyze individual ret)uriis. 
Finally, it, raises the d n ~ ~ r i ,  flag if t)liere is a,ii obst>ac:lv 
in t)he scaai. 

Liries 11-18 11I,('li].t,e the a.rra#ys C k - 1  a.ritl C k - 2  that, 
keep evitlence of the presen 
iii lilies 12-18 IlI)dilt,(+s t,ho 
;I. positJive or iiegat)ive clirect] 
the evidence of the presence of an o b s t d e  is stonger 
in this scan that  it was in the previous scans, i.e., 
Ck ('1) > CI, ( i  + 1). In our case, we have biased the evi- 
dence in the positive direction by a,cldirig the evidences 
of C k  arid Ck-1. This is a stmng bias t h t  inaltes the 
algorithm aware of the presence of an obstacle very 
fastJ. In cont>rast, we biased t,he evidence in tlhe liegii- 
tive direction by substracting from CX: - 1 the avemge 
of the eviclerice of' CI, and C k - 1 .  This is a, weak liia,s 
that makes t)he algorithm forget! the presence of a i  01)- 
s k d o  very slowly. Thiis, obstacles tllia.t have been see11 
in the past, even aft,er many scans, are rapidly ideiit,i- 
fiecl when they reappear. Lines 17-18 make sure t h t ,  
the evidence is never negative. 

VII. Experimental results 
The algorithin was designed using the da.ta set col- 

lected by Jose Macedo arid Mike McHenry t,o support, 
a rela,t,ed work [5]. The set consists of' eight sequences 
with a length that! varies between 15 and 90 seconds. 
The I~liitforIri used to  gather this set wa-s the Urbie 
rolmt,, a small tra,c:k-based pla.t,forrn shown in Fig. 3, 
iisirig a custom latlar based 011 the Acc'uit1y AcciiR,xigx~ 
4000 [7] ,  [SI. This la(1;~ oI,er;i.t,es iit, wii.v~l~Iigt~li of 
1064 Y ) , 7 r i f ,  iri the near-visit)l(-i iiifraretl, aaid h i ~ s  a smi- 
pling interval of H = 10 IriridittIls (i.e., 0.6 degrec~s). 
Ea.ch S C A I ~  hits N,. 512 returIis il.iid t l i ~ s ,  it, C O V ~ ~ S  a.11 
angle of 0 = 307". The ladar is (:itpa.ble of estiniating 
range up to dist)ances of 15 yri ,  (i.e., 50 ft]). 

The algori this  have a, nurnber of pa.ratrnetJers thatJ , 
in practice, aa.e ea.sy to acljust arid once set], work well 
in a) wide variety of scenarios. Given the size arid speed 
of Urhie, we set the range of interest) to lie within 
d, i , , j , ,  = 0.3 711 arid d,71,(l,:c = 2 m. We measured the er- 
ror of tho estimates of t,wo ltriown t,argets within this 
range and est)irriatJe(l the coeficierits iri Eq. 1 t,o be 

tjlie error to  rise at a rate of 1 ~ r m i ,  for every 70 ni,7ri ,  of 
range. The free parameters in C:E'I'-OBS-C:ANDIDATES 
were set to IC1 = 0.025 arid S = 0.03. The free param- 
eter in RELAX-OBST was set, to = 0.05. The pa- 
rameters of REMOVE-THIN-OBST were set to W, = 21 
and 0, = 8 so we eliminate returns that do not hit, 
the obstacle at least! 8 times in a span of 15". Fina 

t,o It-:< = 25. 

0, = 0.015  id h = 12.3. This 111eii.IiS that expe(:t 

the free paranieter in UPDATE-AND-ARCHIVE was 



0 1 i ( x ~  the p:i.rniiioters of the algoritliiii were set] ~ t h y  
1 iri all the scenena.rios of the dai,ta, 

results for this set were 4 false alarms (i.e., a return 
from grass niisclassified as a return from ari obsta- 
cle) in 1313 irnages which covered scenarios where the 
rol)ot w;ibs in tlhe clear and in gra.ss, bot,h sparse arid 
(leiise, both while standing stlill a m 1  moving, arid with 
anicl without, roc:lts, lmth in hidden t)y grass and unoc- 
cliitletl. Figtire 3 shows t,he robot approaching t,wo 
rocks pitrtially liitlderi by sparse grass. The corro- 

.ri prodiic:ecl by tllie laser for an area of 
2 x 2 ~r/,‘ is shomm in Fig. 4. The la.ser is locatled at 
the origin of the) gra,ph. In t)kiis tJop view, the front 
of the robot, is corresponds to the upwards direction. 
The solid pie slices originating from the laser are robot 
self-ocdiisions catused by t,he on-board camera, the an- 
txririas ;tiid other structures. The long lines originating 
from tlic-1 laser iritlicate returns t,hat were identified as 
N~TFOLIA( :E .  All otlier retiirris (i.e., the dots of the 
g r 1 is ) we r e i ( l en t, i fie (-1 i ts  17 o L I A G E . 

Fig. 3 Rohot fhting two roLks at 4 5 O  and 315’’ 
I , I 

1 

Fig. 4. H.et,urri c:lassitica.tioii o f  scene in Fig. 3 

Once. the prototyping of’ the a81gorit,lirn was finished, 
it, was iriipleiriented in C++ and portecl to Urbie, 
which rims iintler VxWorlts. At the time of the port- 
ing, Urhie had a Sick ladar with a sampling interval of 
0 = 8.7 Inradians (i.e., 0.5 degrees) that, spanned an 

.aaiglcl of Cl = 7r in e;i.cli s~:a,ii a r i t l  hac1 expe‘ctecl rarig) 
error 70  run at) 4 7 r ~ .  The porting of the final cock to 
VxWorlts was done in a few hours anid the a lgor i th i  
was easily integrated to tlie real-time system of Ur- 
bie and tested successfuly in dense grass with hitltleii 
obstacles. 

VIII. Conclusion 
We lime presented a real-time algorithm to identify 

foliage present in a natural scene. Once the folia,ge is 
identified, it can be removed from tlie obstacle list and 
the result, can be taken into account to reevaluate t,he 
traversability of a. path. The algorithm uses tlie local- 
ity of obstacles in time arid space to first identify a. list 
of returns that, are likely to be ohstacles and then to 
prune t!his list, t,o elirriiriate false positives. The algo- 
rithrri was succesfully ported to  the Urbie robot ant1 
performed correctly during test on dense foliage scene- 
narios. Our future plans are to extend this a lgor i th i  
to lia,ndle range images anti to incliide the intensity of 
t)he retiirn in malting the classifica.t,iori decision. 
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